📘 Average
Definition
Average means the fair value obtained after dividing the total into equal parts.
Simple Life Example
If 3 friends have 3, 5 and 7 chocolates
Total = \(3+5+7=15\)
Average = \(15÷3=5\)
Total = \(3+5+7=15\)
Average = \(15÷3=5\)
Average Formulas
\[
\text{Average of first } n \text{ natural numbers}=\frac{n+1}{2}
\]
\[
\text{Average of squares till } n=\frac{(n+1)(2n+1)}{6}
\]
\[
\text{Average of cubes till } n=\frac{n(n+1)^2}{4}
\]
\[
\text{Average of odd numbers}=\frac{\text{Last odd}+1}{2}
\]
\[
\text{Average of even numbers}=\frac{\text{Last even}+2}{2}
\]
Examples
Average of odd numbers from 1 to 40
\[
=\frac{39+1}{2}=20
\]
Average of even numbers from 1 to 81
\[
=\frac{80+2}{2}=41
\]
🔥 Exam Shortcuts & Tricks
Shortcut 1:
Average of consecutive numbers = Middle number
Example: 11,12,13,14,15 → Average = 13
Example: 11,12,13,14,15 → Average = 13
Shortcut 2:
Average of odd numbers = middle odd number
Shortcut 3:
Average of even numbers = middle even number
Shortcut 4:
If average of \(n\) numbers is \(A\)
\[
\text{Sum}=nA
\]
Shortcut 5 (Replacement):
\[
\text{New Avg}=A+\frac{\text{New}-\text{Old}}{n}
\]
⏱️ Time & Work Based Average
\[
\text{Work}=\text{Efficiency} \times \text{Time}
\]
If A takes \(a\) days and B takes \(b\) days:
\[
\text{Combined Time}=\frac{ab}{a+b}
\]
Efficiency ratio of A and B:
\[
b:a
\]
🔥 Time & Work Exam Shortcuts
Shortcut 1:
Never find LCM — use
\[
\frac{ab}{a+b}
\]
Shortcut 2:
Average time \(=\frac{a+b}{2}\) ❌ (not together time)
Shortcut 3:
Slower person → less efficiency
📘 Solved Examples (Time & Work)
A can do work in 10 days, B in 20 days
\[
\text{Time together}=\frac{10×20}{30}=\frac{20}{3}\text{ days}
\]
A takes 12 days, B takes 18 days
\[
\text{Efficiency ratio}=18:12=3:2
\]
Average efficiency = \(\frac{5}{24}\) work/day
\[
\text{Time}=\frac{24}{5}\text{ days}
\]
No comments:
Post a Comment