📘 Simple Interest
Basic Terms
Principal (P): Initial amount
Rate (R): Rate of interest per year
Time (T): Time period in years
Simple Interest Formula
\[
\text{Simple Interest (SI)} = \frac{P \times R \times T}{100}
\]
\[
\text{Amount (A)} = P + \text{SI}
\]
Finding P, R and T
\[
P = \frac{100 \times \text{SI}}{R \times T}
\]
\[
R = \frac{100 \times \text{SI}}{P \times T}
\]
\[
T = \frac{100 \times \text{SI}}{P \times R}
\]
🔥 Exam Shortcuts & Tricks
Shortcut 1:
If interest is same every year → it is Simple Interest
If interest is same every year → it is Simple Interest
Shortcut 2:
SI for 1 year = \(\frac{P \times R}{100}\)
SI for 1 year = \(\frac{P \times R}{100}\)
Shortcut 3:
Total SI for \(T\) years = (SI for 1 year) × \(T\)
Total SI for \(T\) years = (SI for 1 year) × \(T\)
Shortcut 4:
If SI equals principal, then \[ T = \frac{100}{R} \]
If SI equals principal, then \[ T = \frac{100}{R} \]
📘 Solved Examples
Example 1:
Find SI on ₹1000 at 10\% per annum for 2 years. \[ \text{SI} = \frac{1000 \times 10 \times 2}{100} = 200 \]
Find SI on ₹1000 at 10\% per annum for 2 years. \[ \text{SI} = \frac{1000 \times 10 \times 2}{100} = 200 \]
Example 2:
Find the amount after 3 years at 5\% p.a. on ₹2000. \[ \text{SI} = \frac{2000 \times 5 \times 3}{100} = 300 \] \[ \text{Amount} = 2000 + 300 = 2300 \]
Find the amount after 3 years at 5\% p.a. on ₹2000. \[ \text{SI} = \frac{2000 \times 5 \times 3}{100} = 300 \] \[ \text{Amount} = 2000 + 300 = 2300 \]
Example 3:
SI is ₹400 on ₹2000 in 2 years. Find rate. \[ R = \frac{100 \times 400}{2000 \times 2} = 10\% \]
SI is ₹400 on ₹2000 in 2 years. Find rate. \[ R = \frac{100 \times 400}{2000 \times 2} = 10\% \]
No comments:
Post a Comment